关于举行程建峰、王天怡、訾瑞昭三位教授的学术报告通知
学术报告(一)
报告题目:The incompressible jet flow with vorticity and gravity
报告人:程建峰教授(四川大学)
时间:6月13日15:00-16:00(北京时间)
地点:国产主播
207
摘要:This talk is concerned with the well-posedness theory and geometric property of steady incompressible jet flow with vorticity and gravity. The main results show that for given incoming mass flux and atmospheric pressure at outlet there exists a unique smooth incompressible jet flow issuing from a semi-infinitely long nozzle. Moreover, we obtain the single intersection property and monotonicity of the free boundary.
报告人简介:程建峰,四川大学国产主播
教授、博士生导师,主要从事非线性偏微分方程的研究工作,研究方向为椭圆方程的Bernoulli型自由边界问题和定常理想流体的自由流线问题,在Arch. Rational Mech. Anal.、Trans. Amer. Math. Soc.、Calc. Var. PDEs、J. Lond. Math. Soc.等发表论文20余篇。入选2021年度教育部重要人才计划青年学者,主持国家重点研发计划青年项目和国家自然科学基金面上项目。
学术报告(二)
报告题目:Isothermal Limit of Entropy Solutions of the Euler Equations for Isentropic Gas Dynamics
报告人:王天怡教授(武汉理工大学)
时间:6月13日16:00-17:00(北京时间)
地点:国产主播
207摘要:In this talk, we want to present the isothermal limit of entropy solutions in $L^\infty$, containing the vacuum states, of the Euler equations for isentropic gas dynamics. First, We want to start with the explicit asymptotic analysis of the Riemann solutions containing the vacuum states. Then, we want to show the entropy solutions in $L^\infty$ of the isentropic Euler equations converge strongly to the corresponding entropy solutions of the isothermal Euler equations, when the adiabatic exponent $\gamma \rightarrow 1$. This is achieved by combining careful entropy analysis and refined kinetic formulation with compensated compactness argument to obtain the required uniform estimates for the limit. The entropy analysis involves careful estimates for the relation between the corresponding entropy pairs for the isentropic and isothermal Euler equations when the adiabatic exponent $\gamma\to 1$. The kinetic formulation for the entropy solutions of the isentropic Euler equations with the uniformly bounded initial data is refined, so that the total variation of the dissipation measures in the formulation is locally uniformly bounded with respect to $\gamma>1$. This is the joint work with Gui-Qiang G. Chen, and Fei-Min Huang.
报告人简介:王天怡,武汉理工大学数学与统计学院,教授,博士生导师。主要研究方向:非线性偏微分方程、流体力学中的数学理论。在 Advances in Mathematics,Archive for Rational Mechanics and Analysis, SIAM Journal on Mathematical Analysis 和Calculus of Variations and Partial Differential Equations等国际著名刊物上发表学术论文20余篇。主持国家自然科学基金项目2项,入选国家高层次青年人才。
学术报告(三)
报告题目:Stability of Couette flow in Stokes-transport equations
报告人:訾瑞昭教授(华中师范大学)
时间:6月13日17:00-18:00(北京时间)
地点:国产主播
207
摘要:In this talk, I will present some recent stability results on 2D and 3D Stokes-transport equations around the Couette with non-homogeneous density background. This is based on joint works with Daniel Sinambela and Weiren Zhao.
报告人简介:訾瑞昭,华中师范大学数学与统计学学院教授,博士生导师,曾获聘华中师范大学“桂子青年学者”。2022年获得国家自然科学基金优秀青年基金资助。主要从事流体力学中偏微分方程解的适定性与稳定性的研究,与合作者一起在可压缩Navier-Stokes方程等双曲-抛物系统解的适定性、衰减率及剪切流的稳定性等方面做出了系列工作。在Arch. Ration. Mech. Anal., Comm. Math. Phy., Math. Ann., J. Math. Pures Appl., J. Funct. Anal., Ann. Inst. H. Poincaré C Anal. Non Linéaire, SIAM J. Math. Anal.等期刊上发表论文30余篇。